

a)

Spectroscopic study of atmospheric pressure microwave plasma at high nitrogen flow rate

Bartosz HRYCAK¹, Mariusz JASIŃSKI¹, Jerzy MIZERACZYK^{1,2} Vadym NAUMOV³, Valeriy CHERNYAK⁴

¹Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences ul. Fiszera 14, 80-231 Gdańsk ²Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia ³Institute of Fundamental Problems for High Technology, Ukrainian Academy of Sciences, Prospect Nauki 45, 03028 Kyiv, Ukraine ⁴Radiophysical Faculty, Kyiv National Taras Shevchenko University, Glushkova 2/5, 03022 Kyiv, Ukraine

The gas temperature can often be inferred from the rotational temperature of the heavy

Comparison of the measured and simulated in Specair program [7] emission spectra of N₂+ first negative system in N₂ plasma (P_{abs} - 2 kW, N₂ flow rate - 50 l/min)

a) Bottom view of N₂ plasma (P_{abs} - 2 kW and N₂ flow rate - 50 l/min), b) normalized tuning characteristics of the cylindrical MPS operated in N₂, *l* - distance between the plasma axis and movable plunger, λ_{p} - waveguide wavelength (147.7 mm), c) the fraction of the incident power reflected at the MPS input for different conditions at fixed position of movable plunger $(l/\lambda_g \sim 0.43)$

Rotational T_r and vibrational T_v temperatures as a function of microwave absorbed power for N_2 flow rates **50 l/min (a) and 200 l/min (b)**

Intensities of the selected lines of N_2 + first negative system (a) and rotational T_r and vibrational T_v temperatures (b) in N₂ plasma as a function of position in quartz tube cross-section

Summary

- The study concerns the rotational and vibrational temperatures of N_2 + first negative system emitted by microwave N₂ plasma at atmospheric pressure and high flow rates
- Obtained rotational and vibrational temperatures ranged from 4500 to 6000 K and from 5000 to 7000 K, respectively, depending on location in N₂ plasma, N₂ flow rate,

and also depending on selected N_2 + first negative system band

Stable operation and the high gas temperature makes MPS attractive tool for different gas processing at atmospheric pressure and high flow rates

REFERENCES:

[1] A. Okada, K. Kijima, J. Phys. D: Appl. Phys. 35 (2002) 2126-2132 [2] Z. Machala, M. Janda, et al., Journal of Molecular Spectroscopy 243 (2007) 194201 [3] P. Bruggeman, D. Schram, et al., Plasma Sources Sci. Technol. 18 (2009) 025017 [4] M. Jasiński, M. Dors, et al., Przegląd Elektrotechniczny 85 (2009) 121-123 [5] M. Jasiński, M. Dors, et al., Eur. Phys. J. D 54 (2009) 179-183 [6] M. Jasiński, M. Dors, et al., Plasma Chem. Plasma Process. 29 (2009) 363-372 [7] http://www.specair-radiation.net/

This research was supported by The National Centre for Research and Development (NCBiR) under the programme NR14-0091-10/2010